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1. (PEN A6, CRUX no.1746) Do cases a = b, a = 1, and now assume 1 < a < b. Write a2+b2−1
ab = b

a+
a2−1
ab .

2. (PEN A109, APMO 2002) WLOG a ≥ b, and then note that 0 < b2+a
a2−b ≤

a2+a
a2−a = a+1

a−1 . Divide into

cases a = 2, a = 3, and a ≥ 4.

3. (BMO1 2016) We have n | m, so write m = an for some a ∈ Z+. Now n+ 2 | an+ 1 so n+ 2 | 2a− 1,

so 2a− 1 = b(n+ 2) for some odd positive integer b. Repeat in this fashion.

4. (IMO 1988 variant) Rewrite as x2+y2

xy−1 = N for x, y,N positive integers, where we need to show N = 5.

WLOG x ≥ y, and write N = x
y + y3+x

y(xy−1) , and show that the nasty term is in (0, 2). Write x = ny − r for

n ≥ 2, 0 ≤ r < y and use this.

5. (PEN H9, Ireland 1995) WLOG x, y > 0, where we also must negate any a’s found (as (x, y, a) works

if any of (−x,−y, a),(x,−y,−a),(−x, y, a) does. Now WLOG x > y and then a = 1−x2−y2

xy = −x
y + 1−y2

xy give

the nasty and nice terms.

6. (PEN A91, IMO 1998) Write a2b+a+b
ab2+b+7 = a

b +
b2−7a

ab3+b2+7b , do cases b = 1, b > 1 with subcases on whether

b2 − 7a is nonnegative or negative.

7. (PEN A77, Russia 2001) Solve case x ≤ y by showing x2+y
xy+1 < 2. For y < x, write x2+y

xy+1 = x
y + y2−x

y(xy+1) .

8. (PEN A5) WLOG x ≥ y, and write x2+y2+1
xy = x

y + y2+1
xy . Get another descent argument.

9. (PEN A89, Turkey 1994) WLOG a ≥ b, do cases b = 1, 2, 3 and a = b. Then write a2+b1+3
ab = a

b +
b2+3
ab .

10. (PEN A78, IMO 1994) Show (m,n) works if and only if (n,m) does. Then assume m ≥ n, and write
n3+1
mn−1 = n2

m + n2+m
m(mn−1) .

11. (PEN A79, IMO 2003) Divide into cases 2a − b = 0, and 2a − b > 0. Do b = 0, then show |a| > |b|.

Show a > 0 so that a > |b| > 0. Then divide out as Q = a2

2ab2−b3+1 = a
2b2 +

b3−1

2b2
a

b2(2a−b)+1 , show that the nasty

term is in (−1, 1). Write a = 2b2n+ r with 0 ≤ r < 2b2. Replacing a, we see that we get

Q = n+
n3b+ 2rnb2 + r2 − n
4nb4 + 2rb2 − b3 + 1

,

where this second term must be 1 is b ≥ 1, and 0 if b ≤ −1. If b ≤ −1 show (a, b) → (−r, b) and use that

−r ≤ 0 to deduce (a, b). If b ≥ 1, show (a, b) → (2b2 − r, b) = (u, b). Deduce solutions from 2u − b = 0,

and otherwise show that 0 < Q < 1 is true if 3b3 > 4b2 (manipulate and use 2u > b). So we only get more

solutions from b = 1.

12. (IMO 2015) WLOG do a ≤ b ≤ c, write ab − c = 2x, ac − b = 2y, bc − a = 2z, so x ≤ y ≤ z. The

key point now is that ab− c | ac− b, and ac− b | bc− a. Consider taking c = ab− 2x, and putting that into

2z−y = bc−a
ac−b , and take out a “nice” term of ab

a2−1 . With a bit of algebra you can show that (a2−1)2z−y = ab+ε,

where ε ∈ {−1, 0, 1} (you will need a number theoretic argument to show that a2 ≥ 2x + 1). ε = 1 should
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lead to (3, 5, 7), ε = −1 leads to (2, 2, 2), (2, 2, 3), and ε = 0 gives (2, 6, 11). For some cases you will need to

consider when sums of powers of 2 are equal, i.e. binary.

12’. (IMO 2015 variant) The proof of 12 should pretty much carry over, except in the casework you get

no solutions as opposed to the 4 you got when p = 2.

12”. (IMO 2015 variant) Apply similar arguments to the above.
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