Polynomial Division in Number Theory: Hints James Rickards Canadian Winter Camp 2017

1. (PEN A6, CRUX no.1746) Do cases $a=b, a=1$, and now assume $1<a<b$. Write $\frac{a^{2}+b^{2}-1}{a b}=\frac{b}{a}+\frac{a^{2}-1}{a b}$.
2. (PEN A109, APMO 2002) WLOG $a \geq b$, and then note that $0<\frac{b^{2}+a}{a^{2}-b} \leq \frac{a^{2}+a}{a^{2}-a}=\frac{a+1}{a-1}$. Divide into cases $a=2, a=3$, and $a \geq 4$.
3. (BMO1 2016) We have $n \mid m$, so write $m=a n$ for some $a \in \mathbb{Z}^{+}$. Now $n+2 \mid a n+1$ so $n+2 \mid 2 a-1$, so $2 a-1=b(n+2)$ for some odd positive integer b. Repeat in this fashion.
4. (IMO 1988 variant) Rewrite as $\frac{x^{2}+y^{2}}{x y-1}=N$ for x, y, N positive integers, where we need to show $N=5$. WLOG $x \geq y$, and write $N=\frac{x}{y}+\frac{y^{3}+x}{y(x y-1)}$, and show that the nasty term is in $(0,2)$. Write $x=n y-r$ for $n \geq 2,0 \leq r<y$ and use this.
5. (PEN H9, Ireland 1995) WLOG $x, y>0$, where we also must negate any a 's found (as (x, y, a) works if any of $(-x,-y, a),(x,-y,-a),(-x, y, a)$ does. Now WLOG $x>y$ and then $a=\frac{1-x^{2}-y^{2}}{x y}=-\frac{x}{y}+\frac{1-y^{2}}{x y}$ give the nasty and nice terms.
6. (PEN A91, IMO 1998) Write $\frac{a^{2} b+a+b}{a b^{2}+b+7}=\frac{a}{b}+\frac{b^{2}-7 a}{a b^{3}+b^{2}+7 b}$, do cases $b=1, b>1$ with subcases on whether $b^{2}-7 a$ is nonnegative or negative.
7. (PEN A77, Russia 2001) Solve case $x \leq y$ by showing $\frac{x^{2}+y}{x y+1}<2$. For $y<x$, write $\frac{x^{2}+y}{x y+1}=\frac{x}{y}+\frac{y^{2}-x}{y(x y+1)}$.
8. (PEN A5) WLOG $x \geq y$, and write $\frac{x^{2}+y^{2}+1}{x y}=\frac{x}{y}+\frac{y^{2}+1}{x y}$. Get another descent argument.
9. (PEN A89, Turkey 1994) WLOG $a \geq b$, do cases $b=1,2,3$ and $a=b$. Then write $\frac{a^{2}+b^{1}+3}{a b}=\frac{a}{b}+\frac{b^{2}+3}{a b}$.
10. (PEN A78, IMO 1994) Show (m, n) works if and only if (n, m) does. Then assume $m \geq n$, and write $\frac{n^{3}+1}{m n-1}=\frac{n^{2}}{m}+\frac{n^{2}+m}{m(m n-1)}$.
11. (PEN A79, IMO 2003) Divide into cases $2 a-b=0$, and $2 a-b>0$. Do $b=0$, then show $|a|>|b|$. Show $a>0$ so that $a>|b|>0$. Then divide out as $Q=\frac{a^{2}}{2 a b^{2}-b^{3}+1}=\frac{a}{2 b^{2}}+\frac{\frac{b^{3}-1}{2 b^{2} a}}{b^{2}(2 a-b)+1}$, show that the nasty term is in $(-1,1)$. Write $a=2 b^{2} n+r$ with $0 \leq r<2 b^{2}$. Replacing a, we see that we get

$$
Q=n+\frac{n^{3} b+2 r n b^{2}+r^{2}-n}{4 n b^{4}+2 r b^{2}-b^{3}+1}
$$

where this second term must be 1 is $b \geq 1$, and 0 if $b \leq-1$. If $b \leq-1$ show $(a, b) \rightarrow(-r, b)$ and use that $-r \leq 0$ to deduce (a, b). If $b \geq 1$, show $(a, b) \rightarrow\left(2 b^{2}-r, b\right)=(u, b)$. Deduce solutions from $2 u-b=0$, and otherwise show that $0<Q<1$ is true if $3 b^{3}>4 b^{2}$ (manipulate and use $2 u>b$). So we only get more solutions from $b=1$.
12. (IMO 2015) WLOG do $a \leq b \leq c$, write $a b-c=2^{x}$, $a c-b=2^{y}, b c-a=2^{z}$, so $x \leq y \leq z$. The key point now is that $a b-c \mid a c-b$, and $a c-b \mid b c-a$. Consider taking $c=a b-2^{x}$, and putting that into $2^{z-y}=\frac{b c-a}{a c-b}$, and take out a "nice" term of $\frac{a b}{a^{2}-1}$. With a bit of algebra you can show that $\left(a^{2}-1\right) 2^{z-y}=a b+\epsilon$, where $\epsilon \in\{-1,0,1\}$ (you will need a number theoretic argument to show that $a^{2} \geq 2^{x}+1$). $\epsilon=1$ should
lead to $(3,5,7), \epsilon=-1$ leads to $(2,2,2),(2,2,3)$, and $\epsilon=0$ gives $(2,6,11)$. For some cases you will need to consider when sums of powers of 2 are equal, i.e. binary.

12'. (IMO 2015 variant) The proof of 12 should pretty much carry over, except in the casework you get no solutions as opposed to the 4 you got when $p=2$.

12". (IMO 2015 variant) Apply similar arguments to the above.

